
MAPPING FIRE AND FIREFIGHTER VISIBILITY FOR 

IMPROVING SITUATIONAL AWARENESS 

by 

Katherine Ann Mistick 

A thesis submitted to the faculty of 
The University of Utah 

in partial fulfillment of the requirements for the degree of 

Master of Science 

Department of Geography 

The University of Utah 

May 2022 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © Katherine Ann Mistick 2022 
 

All Rights Reserved 
 



T h e  U n i v e r s i t y  o f  U t a h  G r a d u at e  S c h o o l  
 
 
 

STATEMENT OF THESIS APPROVAL 
 
 
 

The thesis of Katherine Ann Mistick 

has been approved by the following supervisory committee members: 

 

Philip E. Dennison , Chair 4/11/2022 

 
Date Approved 

Alexander Hohl , Member 4/11/2022 

 
Date Approved 

Michael James Campbell , Member 4/11/2022 

 
Date Approved 

 

and by Philip E. Dennison , Chair/Dean of  

the Department/College/ School 
of Geography 

 

and by David B. Kieda, Dean of The Graduate School. 



 

 

ABSTRACT 

 

 Wildland firefighters assume exceptional risk while mitigating the hazards 

wildfires pose to life and property. While certain protocols and safety initiatives have 

been developed to improve wildland firefighters’ situational awareness, research has not 

yet focused on quantifying and mapping visibility that wildland firefighters possess 

surrounding an active wildfire. A major component of situational awareness during a 

wildland fire event is maintaining a line of sight with the fire and with the crew. This 

research seeks to compare methods for determining visibility at the scale of a wildland 

fire event, including fire visibility and crew visibility. In a wildland environment, 

visibility is dictated by terrain and vegetation. For this reason, two elevation models (a 

terrain model representing bare-earth and a surface model inclusive of vegetation) are 

considered. Further, owing to the fact that the precision of these models affects the 

accuracy of visibility estimation, two spatial resolutions (1 m and 30 m) are considered. 

The Green Ridge fire – ignited July 7th, 2021, in southeastern Washington, USA – serves 

as the case study for this research. Crew and fire visibility is calculated for each date, 

elevation model, and spatial resolution. Visibility across all dates is considered in 

aggregate and comparisons between elevation model and resolution are made using 

median regression. Results of these comparisons reveal that bare-earth elevation and 30 

m models overestimate visibility by up to 29% and 94%, respectively. The most realistic 

model, based on a 1 m digital surface model, produced the most limited average 



iv 

percentage of visible area (8.32%, crew; 11.38 %, fire). Overlapping visibility, or areas 

on the landscape with a view of both crew and fire hazard, are most limited spatially 

(with an average of 0.34 km2), suggesting few areas exist providing good visibility of 

both crew and fire hazards. The results show that more spatially-precise landscape 

models provide necessary detail for determining visibility surrounding an active wildfire 

but are still limited by generalizations and significant processing times. 
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CHAPTER 1 

INTRODUCTION 

As wildfires increase in frequency, size, and intensity (Abatzoglou et al., 2021; 

Balch et al., 2018; Dennison et al., 2014a; Westerling et al., 2006), wildland firefighters 

are exposed to increased risk as they attempt to suppress such fires. Firefighting is 

inherently dangerous. In order to mitigate safety risk, many initiatives have been 

developed to understand and address the causes of firefighter fatalities (Page et al., 2019; 

National Wildfire Coordinating Group, 2017). One of the top five causes of firefighter 

fatalities is entrapment, when one or more firefighters becomes trapped by fire. While 

vehicle or stress-related incidents may be more common, entrapments have the potential 

to injure or kill multiple firefighters in a single incident, as was the case of the Yarnell 

Hill fire where 19 firefighters tragically lost their lives (Arizona State Forestry Division, 

2013). Despite a long-term decrease in firefighter deaths from entrapment, multiple-

fatality entrapment incidents remain a risk to firefighter safety (NWCG, 2017). 

One key protocol developed to improve firefighter safety is Lookouts, 

Communications, Escape Routes, and Safety Zones (LCES) introduced by Gleason 

(1991). Lookouts are experienced wildland firefighters assigned to specifically monitor 

changes – such as weather, fire behavior, and crew movement – that are indicative of 

potential hazards (Gleason, 1991). Communication(s) stresses the importance of direct 



2 

 

and prompt contact between firefighters and incident management. Escape routes are 

predefined paths to safety, of which there must be multiple options (NWCG 2022; 

Gleason 1991). Lastly, safety zones are predefined areas of refuge should fire behavior 

introduce unsafe conditions for firefighting or escape (NWCG 2022, Beighley 1995). 

At its core, LCES seeks to highlight and improve situational awareness for 

wildland firefighters. Situational awareness, or one’s dynamic perception of their 

surroundings, has been studied in detail for high-risk, constantly changing situations such 

as those found in the military (Baek et al., 2018; Nofi, 2000), medical field (Gillespie et 

al., 2013; Graafland et al., 2014), and firefighting (Jolly & Freeborn, 2017; Page & 

Butler, 2018). Not only does situational awareness encompass the ability to perceive 

one’s current situation, it also incorporates one’s ability to predict and respond to changes 

in a manner that best supports one’s desired outcome (Stanton et al., 2001). In the case of 

wildland firefighting, this means constantly monitoring and reevaluating the 

environment, hazard, and safety frameworks such as LCES in order to minimize risk to 

life and property. However, understanding and evaluating situational awareness is more 

straightforward than maintaining it in an active fire situation, which becomes difficult 

owing to several factors including fire behavior, firefighter qualifications and experience, 

topography, and human factors like organization and psychology (Mangan, 2001; Page & 

Butler, 2018). 

Recent research has focused on improving firefighter safety by increasing our 

understanding of one or more aspects of situational awareness, as it pertains to wildland 

firefighting. Jolly & Freeborn 2017 developed a framework for determining fire behavior 

risk rating to improve situational awareness, while other studies have focused on 
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uncovering the effects of topography and fuel on entrapment potential (Lahaye, 2018; 

Page & Butler 2018; Page 2019). Another area of research has focused on geospatial 

modeling of escape routes and safety zones, aiming to improve our understanding of 

travel rates (Campbell et al., 2019a; Campbell et al., 2019b; Campbell et al., 2017a; 

Sullivan et al., 2020) and spatial attributes of safety zones (Campbell et al., 2022; 

Campbell, 2017b; Dennison et al., 2014b). While many of these studies have covered 

critical aspects of LCES, one aspect that has gone largely unexamined is the importance 

of lookouts and their responsibility to maintain a line of sight to both crew and fire 

hazards. Gleason (1991), however, does not limit the importance of sight to just lookouts. 

He states that any firefighter has the authority to alert others of perceived threats. 

Currently, wildland firefighters rely on training and experience, as well as 

communication with fire management, to best position themselves on the landscape 

where visiblity of both fire and other crew is maximized. This demonstrates the 

importance of studying and mapping lines of sight, or visibility, to improve situational 

awareness for wildland firefighters. 

The objective of this study is to examine the tradeoffs between different data 

sources and methods for mapping visibility surrounding active portions of a fire in order 

to maximize a wildland firefighter’s visibility of both fire hazard and crew location. 

Improving our understanding of the strengths and limitations of different data sources and 

methods for visibility mapping could provide a foundation for potential future operational 

use. For example, given an active fire perimeter or a prediction of future fire spread, this 

analysis could be conducted in real time to provide a map of relative visibility to fire 

crews, enabling them to manage the fire from locations that will maximize situational
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awareness. It also has the potential to provide insight into the optimal placement of 

lookouts. 



 

 

 

CHAPTER 2 

 

BACKGROUND 

 

In the United States, the importance of early detection and suppression of 

wildfires gained significant attention following the Great Fire of 1910 (Egan, 2009). As 

early as 1905 manned mountaintops with cabins were used to detect wildfires, and 

eventually, manned towers were common throughout forests in the United States 

(Grosvenor, 1999). Towers continued to be used throughout most of the 20th century, but 

innovative technology such as remote sensing and machine learning (Barmpoutis et al., 

2020) have made staffed fire towers nearly obsolete, landing many on the National 

Register of Historic Places. Methods commonly used today include remotely operated 

cameras, aerial vehicles, or satellites (Kinaneva et al., 2019; Schroeder et al., 2014). 

While much visibility research focuses on early fire detection from these new 

methods (Allison et al., 2016; Barmpoutis et al., 2020; Yuan et al., 2015), not much 

research has been devoted to Qua. This perspective is critical to account for when 

attempting to improve firefighter safety. Typically, on-the-ground visibility is quantified 

through a viewshed or line-of-sight (LOS) calculation. These types of analyses determine 

what is and is not visible on a landscape from one or more observation locations (Figure 

1). 
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Figure 1. Viewshed schematic. (A) Map of elevation overlaid with viewshed results 
indicating visible pixels (blue) calculated from the observer. Green line indicates a single 
line of sight. (B) Aligned terrain profile of line of sight (red line) with guides indicating 
visible areas.  

A viewshed is calculated as the sum of all possible lines of sight from a given 

perspective, accounting for any obstructions between the observer and a pre-defined 

maximum distance of interest. It is possible to calculate viewsheds assuming a flat plane 

or accounting for the Earth’s curvature using geodesic methods. If no intermediate 

obstructions are present in the entire line of sight, the target would be considered visible. 

If any intermediate obstruction (e.g., an elevation above the line of sight) is present, the 

target will not be visible (Figure 1). Viewsheds have been used across disciplines 

including archeology, landscape and urban planning, social sciences, and environmental 

science (Bartie et al., 2011; Yu et al., 2016; Chamberlain & Meitner, 2013; Fisher et al., 
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1997; Murgoitio et al., 2013; Vukomanovic et al., 2018). While previous research has 

shown the usefulness of viewshed algorithms in applications across fields, their use in 

wildland firefighter safety has yet to be explored.  

While viewshed calculations provide a straightforward method for determining 

visibility– the state of and/or degree to which something can be seen – on a landscape, 

there are assumptions that come with mapping visibility based on a rasterized elevation 

model. Visibility can easily be overestimated according to the spatial resolution of the 

analysis surface (Vukomanovic et al., 2018). For example, when using 30 m spatial 

resolution data the calculation assumes that the entire 900 m2 pixel is either visible or 

invisible. This assumption can be remedied with higher spatial resolution data, if 

available. However, these data usually involve tradeoffs such as larger file sizes, 

increased processing time/power, and limited coverage. Further, when using a terrain 

model as the analysis surface we assume no other obstructions exist, which is a faulty 

assumption to make in areas with an abundance of above-ground surface features, such as 

trees in a forest or buildings in an urban setting (Bartie et al., 2011; Murgoitio et al., 

2013). Previous work has tried to address these concerns using advanced algorithms 

(Dean, 1997; Llobera, 2007) to account for vegetation obstructions. More recent work 

has focused on incorporating more detailed surfaces into viewshed calculations using 

lidar data (Doneus et al., 2022; Gargoum & Karsten, 2021; Lecigne et al., 2020; 

Murgoitio et al., 2013; Vukomanovic et al., 2018). Lidar – light detection and ranging –is 

an active remote sensing technique that uses a pulsed laser to capture precise above-

ground elevation points (Lefsky et al., 2002). These data are captured in a point cloud 

format, with the density of data dictating the amount of detail captured (Lefsky et al.,
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2002).  

Using a surface model that includes vegetation or an algorithm to account for 

through-stand visibility may address certain assumptions made when calculating 

visibility. However, there are a variety of tradeoffs when determining visibility according 

to different input data that need to be explicitly quantified. Bartie et al. (2011) 

determined a combined approach was useful for urban visibility, using a bare earth 

terrain model along with a surface model to incorporate building height, and a vegetation 

map to include partial visibility through urban trees. However, their application focused 

solely on urban visibility. Murgoitio et al. 2013 studied through-stand visibility in 

lodgepole pine in Central Idaho, a landscape that is prone to wildland fire (National Park 

Service, 2021). However, visibility analyses pertaining specifically to wildland 

firefighters working active fires have not been investigated.  

Specifically characterizing visibility in an active fire landscape is important as it 

is a much more complex and dynamic environment than previous studies have 

considered. Unlike stationary targets, wildland fire moves across the landscape in semi-

predictable ways (Alexander & Cruz, 2006; Pastor et al., 2003; Salis et al., 2016). 

Wildland fires span a large range of spatial scales, ranging from a few hectares to many 

km2 in size. While Vukomanovic et al. 2018 considered visibility over long distances (10 

km radius), their focus was on stationary objects (residences). Other prior visibility 

studies have been more limited in spatial scale (e.g. 60 m in Murgoitio et al., 2013, up to 

2.8 km in Gargoum & Karsten, 2021, and <250 m in Bartie et al., 2011). Beyond the 

spatial scale and dynamic nature of wildland fire, crews are not stationary and are 

frequently moving through the environment, making assessment of visibility over space
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particularly important. This research is unique in assessing visibility for both 

firefighting crews and wildland fire over space using a variety of different geospatial 

inputs.   



CHAPTER 3 

METHODS 

3.1 Study Area 

The Green Ridge fire in southeastern Washington, USA (Figure 2) was ignited 

by lightning on July 7th, 2021, and served as the case study for this analysis. Growing 

to over 174 km2, this fire had nearly 400 assigned personnel during peak fire activity 

(InciWeb, 2021). Bare-earth elevation in the immediate vicinity of the fire ranges from 

approximately 924 meters to 1,942 meters. 

Figure 2. Green Ridge fire location. (A) Washington, USA. (B) Red pin indicates the fire 
location in southeastern Washington. (C) Cross-hatched area indicates one of the last 
infrared-captured fire perimeters for the Green Ridge fire, on September 12th, 2021.  
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The landscape is tree-dominated primarily with a closed canopy. LANDFIRE 

classifies most of the area as a mixed conifer forest including Douglas fir, ponderosa 

pine, and lodgepole pine. Vegetation heights range from <1 meter up to 38 meters. A 

few open-canopy and deciduous shrub-dominated areas exist within the immediate 

vicinity of the fire as well.  

3.2 Elevation Models 

Two types of digital elevation models (DEMs) were compared in this study: 

digital terrain models (DTMs), where pixel values represent the mean elevation of the 

terrain, absent any aboveground features (Figure 3B, D), and digital surface models 

(DSMs), where pixel values represent the elevation of the terrain and aboveground 

features (Figure 3A, C). Both models were considered at fine-scale resolution (1 m; 

Figure 3A, B) and coarse-scale resolution (30 m) (Figure 3C, D). Fine-scale elevation 

models were derived from USGS 3DEP airborne lidar, acquired between fall of 2017 

and summer of 2018 and published for use in 2019 (USGS, 2019). The average point 

density of this dataset is 8.06 pts/m2, and the entire final Green Ridge fire perimeter and 

surrounding landscape is captured by this product. Default point cloud classifications 

allowed me to generate a 1 m DTM using ground points and a 1 m DSM using first-

return points to incorporate vegetation heights. All lidar processing was conducted 

using LAStools (radpidlasso GmbH, Gilching, Germany, www.rapidlasso.com).  

 The 30 m DTM was a USGS product derived from Shuttle Radar Topography 

Mission (SRTM) data (Farr & Kobrick, 2000). To create a 30 m DSM, LANDFIRE 

Existing Vegetation Height (EVH), a 30 m product, was added to the SRTM-derived 
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Figure 3. Elevation model comparison. (A) 1m DSM , (B) 1m DTM, (C) 30m DSM, (D) 
30m DTM.  

DEM. EVH reports the average height of the dominant lifeform (e.g. grass, shrub, tree) 

in each 30 m pixel. Decision-tree models are used to predict heights for EVH, based on 

field-reference data, lidar, Landsat, and other datasets (LANDFIRE, 2008). For both the 

1 m and 30 m DSMs, vegetation height was not reduced within the burn scar of the 

Green Ridge fire.  

3.3 Node Placement 

Viewsheds were calculated for each elevation model from the perspective of 

both crew and fire “nodes”. A node represents a single-pixel location of crew or fire 

perimeter for which a viewshed is calculated. Multiple nodes can be used to represent 
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the placement of crew on the landscape, or the shape of the fire perimeter. Crew nodes 

were placed according to features stored in the geospatial incident data acquired from 

the National Interagency Fire Center (NIFC) for different dates of the Green Ridge fire 

(Table 1, Figure 4). These features are labeled “completed handlines” which refers to 

the construction of handlines, a containment tactic that involves crew using handtools to 

dig or scrape out a fireline (NWCG, 2022). As these handline features are part of the 

official incident data, they are the most accurate representation available of crew 

location during fire suppression operations. Crew nodes were placed every 90 m along 

the handline features, to balance accurately representing crew locations with processing 

efficiency.  

For each handline, complimentary fire nodes were placed on the landscape to 

represent where the fire was most active for the corresponding date (Figure 4). Infrared 

imagery, flown over the Green Ridge fire nightly, provides information on fire activity 

for fire management during suppression. These imagery reports include geospatial 

features indicating total fire perimeter, intense heat perimeters, and isolated intense heat 

locations.  

Table 1. Summary of nodes placed on landscape for Green Ridge case study. Fire 
acreage from official Green Ridge incident reports (InciWeb, 2021). 

Date Number of 
Crew Nodes 

Number of 
Fire Nodes 

Fire Growth 
(acres) 

Total Fire 
(acres) 

7/21/21 24 60 1,677 3,245 
7/22/21 14 128 666 3,912 
7/23/21 7 122 670 4,581 
7/25/21 7 108 669 5,883 
8/05/21 30 53 1,237 13,488 
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Figure 4. Locations of fire nodes (triangles) and crew nodes (circles), color-coded by 
date. A Green Ridge fire perimeter from 9/12/21 is shown for reference.  

Also available from the NIFC, these official perimeters provide the most accurate 

record of daily fire progression on the landscape. Intense heat perimeters best represent 

fire activity per day; as such, fire nodes were placed every 90 m along the perimeter of 

these polygons for each date corresponding to completed handlines. 

3.4 Viewshed Processing 

All viewshed processing was done using the ArcPy library in Python 3.7.9. 

Geodesic Viewshed (also referred to as “Viewshed 2”), released with Esri’s ArcGIS Pro 

2.7 in 2020, was used to calculate all viewsheds. This algorithm accounts for the 

curvature of Earth’s surface by transforming surface elevations into three-dimensional 

coordinates and calculating geodesic sightlines (Esri, 2022). Geodesic Viewshed 

requires an input elevation model and observer point locations; it allows for control 
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over other elements involved in the calculation such as observer height, and viewshed 

radius. The resulting viewsheds indicate pixels on the input raster that are visible to one 

or more observers (Figure 1).  

For each date,  a total of eight viewsheds were calculated using Geodesic 

Viewshed: each DEM was considered at both 1 m and 30 m resolution, while both crew 

and fire nodes were separately considered as observers. Although viewsheds indicate 

areas on the landscape that can be seen by observers, the inverse is also true. Thus, by 

mapping viewsheds from a given observer point, you are also mapping areas on the 

landscape from which the observer point can be seen. In the case of fire and crew nodes, 

this enables the analysis of landscape-scale crew/node visibility. Viewsheds with crew 

node inputs had observer elevation explicitly set to that of the terrain, excluding any 

vegetation, with an offset of 1.7 m to account for average human height. Viewsheds 

with fire node inputs took their elevation from the input DEM, allowing fire to be 

simulated on the ground or at the level of vegetation height, depending on the DEM 

(Figure 5). All viewsheds were restricted to a 3.5 km radius, per node, to balance 

realistic depth of view with processing time.  

Each viewshed calculation resulted in a raster, where each pixel value 

represented the number of crew or fire nodes from which that pixel was visible. 

Recalling Figure 1, where there is only one observer, each blue pixel has a viewshed 

value of 1 which we interpret as 100% of observers can see said blue pixels. 

Conversely, the blue pixels in Figure 1 could also be interpreted as areas on the 

landscape that can see 100% of the observers. For the purpose of this study, visibility    
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Figure 5. 1m DSM (A) and DTM (B) profile transects across the 7/23/21 handline 
shown in Figure 3. Vertical lines indicate node locations. (A) shows vegetation 
presence will influence node location and visibility.  

will refer to the percentage of nodes that can see or be seen from a pixel location on the 

landscape.   

 Geodesic Viewshed was implemented using graphic processing unit (GPU) 

processing which allowed for increased performance. A Nvidia Tesla T4 GPU with 320 

tensor cores and 16 GB of memory was used for viewshed calculations. 30 m 

processing times were under one minute, while 1 m processing times varied from 4 

hours to > 10 hours, depending on the number of nodes used for processing.  
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3.4.1 Viewshed Post-Processing 

Geodesic Viewshed outputs a raster indicating visible pixels on the landscape, 

according to input nodes and elevation model. The minimum value is zero, indicating 

no visibility. The maximum possible value is equal to the number of input crew or fire 

nodes (Table 1). Owing to the range of the number of input nodes, each viewshed was 

normalized according to Equation 1:  

𝑥𝑛𝑜𝑟𝑚  =
𝑥 

max(𝑥)
(1) 

where 𝑥 represents the original visibility value between 0 and the maximum number of 

input nodes (max(x)), 𝑥𝑛𝑜𝑟𝑚 is the normalized visibility value, between 0 and 1, where a 

value of 1 represents a pixel visible by 100% of the input nodes.  

In order to understand the distribution of visibility according to input nodes, 

normalized viewsheds were reclassified according to two thresholds: more than 10% 

visibility and more than 30% visibility. These reclassified viewsheds represent areas on 

the landscape that are visible to at least 10% or 30% of nodes, respectively. Recall that 

original viewsheds represent areas on the landscape that are visible to one or more 

nodes. These reclassified viewsheds, in addition to the originals, show how visibility is 

influenced by the number of nodes on the landscape.  

Further post-processing was done to determine where crew and fire viewsheds 

overlap, or areas on the landscape where a lookout would have some degree of visibility 

of both firefighters and active fire. For each date, according to DEM and resolution, the
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crew and fire node viewsheds were summed to obtain all non-zero overlap. Resulting 

summed visibility has a possible range between 0 and 2. Often, much of this 

overlapping fire-crew visibility is found between the fire and the crew. However, if this 

method is to be applied for the identification of possible locations to place a lookout, 

for whom both crew and fire visibility is important, then the area between fire and crew 

is unsuitable, given the safety risk. To remove these potentially dangerous areas from 

consideration, a convex hull between fire and crew nodes was used to exclude the area 

between a crew and active fire henceforth referred to as the high risk zone (HRZ) 

(Figure 6C). This approach was applied to overlapping viewsheds to determine the 

resulting low risk zone (LRZ) (Figure 6D). 

3.5 Analysis 

Median regression, conducted using the quantreg R package (Koenker 2022, R 

Core Team 2020), was the main approach used to compare visibility across different 

models. Median regression was chosen instead of the more traditional ordinary least 

squares regression because the assumption of normality was not met in the data. Pixel-

by-pixel comparisons between DEMs, keeping resolution constant, and between  

resolutions, using either DTMs or DSMs, were modeled using median regressions 

(Table 2). 

Visibility was plotted on a pixel-by-pixel basis to determine the degree of 

agreement across DEMs and resolution by fitting a median regression model. For 

comparisons across DEMs (holding resolution constant), the slope of the median 

regression describes how much visibility is lost with the addition of vegetation on the
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Figure 6. Example viewsheds for 30 m DTM on 7/21/21 [lowest visibility (blue), 
highest visibility (red)]. (A) Crew node visibility [0.04, 0.92] (B) Fire node visibility 
[0.02, 0.8] (C) Overlapping visibility, HRZ and LRZ [0.06, 1.51] (D) LRZ visibility, 
HRZ excluded based on a convex hull around crew and fire nodes [0.06, 1.51]. 

Table 2. Summary of pixel-by-pixel comparisons modeled using quantile regression. 

Comparison Type Constant Node Type 
DEM 30 m resolution Crew 
DEM 30 m resolution Fire 

Resolution DTM Crew 
Resolution DTM Fire 
Resolution DSM Crew 
Resolution DSM Fire 
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landscape. Complementarily, comparing across resolutions, the slope describes the 

prevailing trends in differences between fine and coarse resolution data.  

In order to accomplish a pixel-by-pixel analysis across resolutions, all 1 m 

viewsheds were aggregated to 30 m using mean aggregation. The mean aggregation 

takes the average value of all 1m pixels, in a 30m2 area, and applies that average as the 

new 30 m pixel value.  The output is a new raster representative of 1m visibility at a 

30m resolution.  Since resolution comparisons consistently use either the DTM or DSM, 

indirect comparisons could be made regarding the influence of resolution across DEMs, 

including for highly visible, safer LRZ locations. 



 

 

 

CHAPTER 4 

 

RESULTS 

 

4.1 Visibility 

Overall, visibility in the high-elevation, forested landscape of the Green Ridge 

fire in southeastern Washington was limited (Table 3). On average, the 30 m DTM, using 

fire nodes as observers, resulted in the largest visible percentage of the landscape 

(36.46%). However, our most realistic model (1m DSM) resulted in the two lowest 

average visible percentages of the landscape at just 8.32% for crew nodes and 11.38% for 

fire nodes (Table 3). All 30 m models, regardless of DEM, overestimated visible area by 

as little as 6% or as much as 24%, when compared with their 1m counterparts. DTMs 

also significantly overestimated visible area compared with DSMs, by as much as 14%. 

However, the overestimation by DTMs was more significant for crew nodes than fire 

nodes.  Further, crew nodes generally saw smaller percentages of the landscape compared 

with fire nodes.  

When introducing thresholds for visibility, the visible area decreased across all 

model types regardless of node type, resolution, or DEM (Table 3, Figure 7). A 10% 

threshold severely restricted visible areas, but all model types retained some degree of 

visibility across the landscape. The same was not true using a 30% threshold, where 

several model combinations forfeited any visible area (Table 3). When restricting  
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Table 3. Percentages of the landscape visible to crew and fire nodes for each date, 
elevation model, and resolution. All nodes, more than 30% of nodes, and more than 10% 
of nodes are considered as thresholds for visibility. 
 

 Percent visible to… 

Date DEM Resolution 
(m) 

at least 1 
crew node 

at least 1 
fire node 

more than 
10% of 

crew nodes 

more than 
10% of 

fire nodes 

more than 
30% of 

crew nodes 

more than 
30% of 

fire nodes 

7/21 

DTM 
30 22.59 40.63 19.28 26.57 13.71 8.07 
1 18.48 16.47 15.20 13.77 9.62 2.25 

DSM 
30 21.27 39.19 17.95 25.62 11.78 7.84 

1 9.36 12.21 5.85 1.63 1.47 0 

7/22 
DTM 

30 21.06 31.28 17.98 16.03 12.36 4.35 
1 13.44 25.47 12.18 9.20 7.93 0.69 

DSM 
30 11.28 31.18 16.16 15.31 10.22 3.90 
1 1.53 7.12 0.81 0.01 0 0 

7/23 
DTM 

30 15.31 33.54 15.30 12.57 0 3.63 
1 8.80 26.71 8.79 8.03 0 1.02 

DSM 
30 9.83 32.66 9.83 11.59 0 3.44 
1 0.14 7.73 0.15 0.13 0 0 

7/25 
DTM 

30 23.31 42.08 23.32 22.95 15.99 4.38 
1 15.63 33.12 15.63 12.04 11.23 0.95 

DSM 
30 16.72 41.13 16.70 22.08 10.58 4.10 
1 15.63 16.08 8.12 1.65 4.40 0 

8/5 
DTM 

30 35.14 34.77 25.17 21.29 15.74 6.94 
1 29.47 27.74 18.76 11.92 10.77 2.05 

DSM 
30 30.46 33.75 20.81 20.38 12.19 6.58 
1 14.95 13.76 7.07 2.08 2.15 0.05 

All 
dates 

average 

DTM 
30 23.49 36.46 20.21 19.88 11.56 4.79 
1 17.17 25.90 14.11 10.99 7.91 2.08 

DSM 
30 17.91 35.58 16.29 18.99 8.95 4.35 
1 8.32 11.38 4.40 1.10 1.60 0.83 
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Figure 7. Example viewsheds for crew nodes, 30 m DSMs on 8/05/21. (A) Visibility of 
one or more nodes. (B) Visibility of more than 10% of nodes. (C) Visibility of more than 
30% of nodes.  
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viewsheds by any threshold, fire nodes’ visible area, on average, was more affected than 

that of crew nodes. For example, when imposing a 10% threshold, the difference in 

percentage visible area for crew nodes decreased by an average of 3% (across all model 

types). For fire nodes, this difference in percentage visible was 15%. When imposing a 

30% threshold, crew nodes again maintained a higher average percentage visible area, 

with a difference of just 9% versus 24% for fire nodes.   

4.2 Median Regression 

Six median regressions capture the differences across resolutions and DEM types, 

accounting for different node types. Three categories per node type are considered: a 

DEM comparison between 30 m viewsheds, a resolution comparison for DTM-based 

viewsheds, and a resolution comparison for DSM-based viewsheds (Figure 8, Figure 9). 

The explanatory variable for each regression is that of the model which added more 

complexity to the landscape (whether that be 1 m resolution, or a DSM), and therefore 

the slope of the regression provides a measure of how well visibility is explained when 

adding more detail to the landscape on which visibility is calculated. The DEM 

comparison (DTM versus DSM at 30m) provided the highest slopes, 0.98 and 0.71 for 

fire and crew nodes, respectively (Figure 8). For fire nodes at 30 m, the addition of 

vegetation height (DSM visibility) results in 98% of the visibility produced without 

vegetation (DTM visibility). However, for crew nodes, only 71% of visibility is captured 

using a 30m DSM as compared to a DTM.   

Resolution comparison regressions resulted in lower slopes, but also saw DTM-

based comparisons with higher slopes than DSM-based models (Figure 9). Contrary to  
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Figure 8 Regressions for 30 m elevation model comparisons. A: Fire nodes B: Crew 
nodes. Density refers to point density, or the number of points plotted at the same (x,y) 
location. 

 Figure 9. Regressions for resolution comparisons. A: Fire nodes, DTM B: Fire nodes, 
DSM C: Crew nodes, DTM D: Crew nodes, DSM. Density refers to point density, or the 
number of points plotted at the same (x,y) location.  
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the DEM comparison plots, crew nodes generally produced higher slopes than fire nodes, 

for their respective DEM. The detail provided by a DSM at 1m predicts just 6% of the 

visibility at 30m for fire nodes and 14% for crew nodes. Excluding vegetation detail at 

higher resolution still only predicts 57% of the visibility for fire nodes and 70% for crew 

nodes. Regardless of DEM or resolution, each plot demonstrates how much more 

widespread areas of low visibility are compared to areas of high visibility owing to the 

significant point density concentration at low visibility values (Figure 8, Figure 9). 

4.3 Visible Area and Overlap 

Visible area is highly dependent on node type, DEM type, and resolution (Table 

4, Figure 6). Crew visible area is generally higher when modeled at 30m, across both 

DEMs; however DTMs generally model more area than DSMs for both node type as 

well. Fire visible area is generally higher at 30m, across DEMs, with DTMs only slightly 

outperforming DSMs, compared with crew nodes.  

Overlapping crew and fire viewsheds present significantly limited visible areas at 

both resolutions, with most visible areas occurring between the fire and crew nodes. All 

overlapping viewsheds have more visible area from 30m models than 1m. LRZs were 

even further spatially limited, by excluding potentially dangerous terrain directly between 

crew and fire nodes. Following the trend of general visibility, DSM LRZs were 

significantly smaller than those of the DEMs. Resolution also played a big factor here, 

with 30 m consistently overestimating the area of an LRZ (Table 4). On average, DSMs 

have a greater difference between overlap area modeled at 30 m versus 1m, with 30 m 

DSMs over-predicting overlap by an average of 2.6 km2.  DEMs were not far behind with 
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Table 4. Visible area in km2 describing overlapping visibility. Percent safe refers to the 
LRZ in km2 modeled at 1m over the LRZ in km2 modeled at 30m, multiplied by 100.  
 

Date DEM Resolution 
Crew 

Visible 
Area 

Fire 
Visible 
Area 

Overlap 
Visible 
Area 

LRZ Visible 
Area Percent Safe 

7/21 
DTM 

30 11.93 24.08 4.69 1.43 
58.74 

1 9.76 18.3 2.67 0.84 

DSM 
30 11.23 23.23 4.3 1.34 

21.64 
1 4.94 7.24 0.7 0.29 

7/22 
DTM 

30 9.62 20.65 4.42 2.5 
45.6 

1 6.14 16.81 2.4 1.14 

DSM 
30 5.15 20.58 1.33 0.73 

1.37 
1 0.7 4.7 0.01 0.01 

7/23 
DTM 

30 6.42 22.03 1.63 0.47 
57.45 

1 3.69 17.54 1.09 0.27 

DSM 
30 4.12 21.45 0.72 0.28 

0.36 
1 0.06 5.08 0.001 0.001 

7/25 
DTM 

30 9.86 28.73 2.39 1.82 
52.2 

1 6.61 22.61 1.17 0.95 

DSM 
30 7.07 28.08 2 1.68 

21.43 
1 6.61 10.98 0.42 0.36 

8/05 
DTM 

30 19.58 21.05 8.35 4.54 
65.86 1 16.42 16.79 5.55 2.99 

DSM 
30 16.97 20.43 7.51 4.18 

24.64 
1 7.12 8.33 1.58 1.03 

 
 

30 m models over-predicting overlap by an average of 1.7 km2. These values are 

significant considering the overlap area for each of these categories is quite small (Table 

4). 

LRZs followed the same pattern, with 30 m DSMs and DTMs over-predicting by 

1.3km2 and 30m DEMs over-predicting by 0.91 km2 , for even smaller areas. The 

percentage of LRZ areas modeled at 1m compared to 30 m (Table 4) is always less than 

100, confirming that 30m models are consistently overestimating LRZs. For one date, 

7/23/21, just 0.36% of the 30 m LRZ is also deemed a 1 m LRZ according to the DSM 
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model. These percentages are significantly higher for DEM models, with an average of 

55.97%, compared to DSM models, with an average of just 13.89%.  

 

 



CHAPTER 5 

DISCUSSION 

The results of this research can be interpreted through two distinct lenses: that of a 

GIS user, and that of a fire professional. The implications for a GIS user stem from the 

results of comparing model resolution and model type, as these are frequently 

investigated concerns (Fisher et al., 2018; Vukomanovic et al., 2018). A decision-maker, 

such as a member of an incident command team or wildland firefighter, is likely more 

concerned with practical implications of the research: what can these results tell us about 

improving safety on the job? 

Overall low visibility is expected in a forested, mountainous landscape. In 

general, crew nodes can see a smaller percentage of the landscape than fire nodes 

(keeping resolution and model type constant). However, a notable influence on these 

results is the ability of fire nodes to “see” from treetops (observer elevation taken from 

the landscape) versus crew nodes which are forced to take their vantage point from the 

elevation/height of a typical human observer (1.7 m above the bare-earth elevation). 

Additionally, for each date, there are anywhere from 1.7 to 17 times as many fire nodes 

as crew nodes, providing greater diversity in elevation and aspect. However this 

difference is mitigated when analyzing the percentage of a landscape that is visible, a 

calculation which accounts for the larger area covered by more nodes. 
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Another notable difference between crew and fire nodes is that crew nodes 

maintain larger portions of visible areas despite the imposition of a threshold of 10% or 

30% on the original viewshed. This suggests that crew nodes may be better positioned 

overall to see a landscape, perhaps owing to the likelihood that a handline is constructed 

somewhere with naturally better visibility (e.g., near a ridgeline to reinforce a natural fire 

break). It may also suggest that fire nodes’ ability to see larger areas is dependent on a 

few well-positioned nodes, which, when removed, severely restrict visible areas.  

5.1 GIS Implications 

5.1.1 Elevation Model Comparison 

Owing to their inclusion of vegetation as an opaque barrier on the landscape, 

DSMs are inherently more restrictive in their ability to model visibility. However, this 

restriction also paints a more realistic picture of the landscape, especially in a forested 

environment where a DEM severely oversimplifies the landscape. The slopes of our 

median regressions between 30m DEM modeled visibility and 30 m DSM modeled 

visibility (Figure 6), support that a DSM is more restrictive in its modeling of visibility. 

However, at 30m for fire nodes, a DSM captures 98% of the visibility captured by 

a DTM model. However, for crew nodes, a DSM only captures 71% of the visibility 

produced by a DTM model of the same resolution. The lower slope for crew nodes is 

likely a result of the observer elevation setting mentioned in the previous section, where 

visibility from the surface is much more restricted, while visibility from the top of the 

DSM landscape is only slightly more restricted than when using a DTM (Figure 5).  

These results further confirm that DTMs oversimplify a landscape and modeling 
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visibility using DTMs will overestimate visibility (Murgoitio et al., 2013; Vukomanovic 

et al., 2018). However, it is important to note that while a DSM may provide more detail 

to the landscape by including vegetation, all vegetation is assumed to be opaque, which is 

a more restrictive oversimplification of reality (Doneus et al., 2022; Bartie et al., 2011; 

Murgoitio et al., 2013). Therefore, we must balance our interpretation to account for the 

fact that the DSM estimation of visibility may be overly restrictive.  

5.1.2 Resolution Comparison 

Similar to a DSM providing more realistic surface representation than a DTM, 

finer resolution should also more realistically model topography. Therefore, our most 

realistic model is that of the 1m DSM-based. The slopes comparing resolution (Figure 8) 

suggest that regardless of DEM type or node type, visibility using 30 m models 

overestimate visibility. DTM-based resolution comparisons also show higher slopes than 

that of DSM-based resolution comparisons, further suggesting the overestimation of less-

realistic models (DEM, 30m). Further, the most realistic model produces the smallest 

slopes, suggesting that true visibility is most severely overestimated by these models.  

These results confirm that modeling visibility using coarse resolution significantly 

overestimates visibility. However, it is possible that our most realistic model is too 

restrictive due to EM type and resolution. While 1m data provides a more realistic 

landscape, it also restricts observers to 1m2 areas, versus 900m2 areas at coarse 

resolution. Realistically a crew member may traverse >1m2 to assess surrounding 

visibility. This may contribute to a slight underestimation of visibility by the 1m models, 

especially those using DSMs. While the 1m DSM may provide the most realistic model, 
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it may not be the most realistic method for analysis owing to limited data availability, 

high volume required for data storage, and lengthy processing times of up to 10 hours per 

viewshed.  

5.2 Wildland Firefighter Implications 

Generally, low visibility is not a surprising result when considering most wildfires 

occur in forested areas with rugged terrain that naturally limits visibility.  However, the 

ability to model such visibility may be useful in planning mitigation efforts. Knowing our 

models overestimate visibility at course resolutions/using DTMs, these models may 

provide a false sense of security when entering these areas for wildland firefighting 

efforts.   

Areas where a wildland firefighter could potentially see both their crew and 

nearby fire hazard are relatively rare in mountainous, forested landscapes. When present, 

these areas are quite small and significantly overestimated by the simpler models. 

However, methods do exist to successfully map these areas with room to improve 

accuracy. With improvement, there is potential to use these methods to map highly 

visible areas of an active fire, to increase situational awareness. Differences between 

DTMs and DSMs may be less of an issue for maintaining communications, since 

vegetation will provide less of an impediment to radio communications than to visible 

line-of-sight.  

Future work should address realistic modeling of crew and fire location, 

specifically accounting for crew movement beyond 1m2 areas. Further, accounting for 

fire behaviors such as crown fire versus surface when placing fire nodes may further 
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increase our ability to accurately model visibility. However, these methods are intended 

for increasing situational awareness in the planning stage rather than in real-time 

response to mitigation efforts and fire behavior.  

While avenues exist to improve these modeling efforts, the processing power and 

time required for the best models is a major consideration for implementing these 

visibility models. Modeling 1m viewsheds from 30m data should be considered as a way 

to bridge this major processing requirement.  

This study does not consider other impacts on visibility found in wildland fire 

landscapes. One major influence on visibility surrounding an active fire is smoke. Not 

only the presence of smoke but the combination of intense fire behavior, with severe 

weather such as high winds, may produce varied impacts on visibility that are not 

accounted for in these models. Not only will fire behavior alter smoke effects, it will also 

determine flame height/shape which alters visibility in a different way. For example, a 

crown fire with 10 m flames is much more visible than that of flames on the surface.  

Another dynamic aspect of a wildland fire environment is the removal of fuel, 

both through burning and mitigation efforts. Our models do not account for burned 

vegetation altering the visibility as captured by pre-fire lidar. Depending on the severity 

of the fire, burned vegetation may be reduced significantly in height, or have more 

through-vegetation visibility owing to fewer leaves/branches present. Mitigation efforts 

such as bulldozing lines and digging handlines may also alter the landscape in a way that 

changes visibility. These landscape changes are not accounted for in this study’s 

modeling. Another limitation of this study is the conversion of lidar point clouds into 

pixel-based rasters. Using a raw point cloud to calculate visibility (Lecigne et al., 2020), 
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rather than even a very fine-scale raster, may provide compelling results, especially in 

areas where vegetation is widespread. 

Despite the limitations, this research may be successfully incorporated with 

existing research to improve firefighter safety outcomes. For example, safety zone 

mapping relies on existing vegetation type and elevation to determine areas of sufficient 

safety for wildland fires (Campbell et al., 2022). Visibility analysis could easily be 

incorporated into these calculations to provide further information about the safety zones. 

For example, a safety zone may meet all requirements to shelter a crew, but if it has 

severely restricted visibility it may be a less desirable place to send a crew. Additionally, 

the Escape Route Index (ERI) developed by Campbell et al., 2019 could incorporate 

visibility analyses to further characterize the safety of these routes in an active fire 

situation. Overall this work could contribute to wildland fire mitigation efforts by 

presenting further metrics for determining the safety of areas wildland firefighters may be 

sent to work.  



CHAPTER 6 

CONCLUSION 

This study compared methods for mapping fire and firefighter visibility in order 

to improve situational awareness. The results showed that visibility is overestimated 

when modeled using simplified landscape models and coarse resolution. An omission of 

vegetation from the landscape overestimates visibility by up to 29% at the 30m level. 

However, even when using a more detailed DSM model, using coarse resolution 

topography models overestimates visibility by 94% for fire nodes and 86% for crew 

nodes. The most realistic model, using a 1m DSM, produced the most limited visible 

areas in terms of both average visibility and total visible area.  

Further, overlapping visibility is severely limited at the 1m DSM level, suggesting 

a lack of areas that realistically provide good visibility of both wildland firefighter crew 

and active fire hazard. However, mapping these areas could significantly improve 

situational awareness by allowing incident managers to assess visibility of planned 

handline locations, safety zones, or escape routes. 

Certain improvements are necessary to bring visibility modeling into practical 

application. Most importantly, hardware and significant processing time for 1m data is 

prohibitive. Future work should address this by attempting to model fine-scale visibility 

focusing on realistic processing times and data storage requirements. Further refinements 
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should focus on addressing assumptions that over- or under-estimate visibility, such as 

opaque vegetation and an observer’s ability to move on the landscape.  
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